AD-Ali4 708

UNCLASSIFIED
i !

MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB /6 472
COORDINATED RADAR AND AIRCRAFY OASERVATIONS OF TURBULENCE.(U)

MAY B1 M LABITY DTFA01-00~7-105U6
ATC=-108 FAA=RD=81-44 .




g e
d se W32

=i.:p
-m” Pl

s
3 0

MICROCOPY RESOLUTION TEST CHART "
NATIONAL BUREAU OF STANDARDS-1963-A
L










Technical Report Documentation Page
1. Report No. 3. Gevernmont Accossion Ne. 3. Recipiont's Cetaleg No.

FAA-RD-81-44 HD’ ’A | '\;‘L /log

4. Tirle ond Subtitle 3 Repert Dare
Coordinated Radar and Aircraft Observations 26 May 1961
of Turbulence 6. Performing Orgenizetian Code

7. Authorls) 8. Porforming Orgenizetion Report No.
Melvin Labitt ATC-108

9. Paerforming Grganization Nome ond Address 10. Work Unit Ne. (TRAIS)
Massachusetts Institute of Technology
Lincoln Laboratory 11. Contrect or Grant No.
P.O. Box 73 DTFAD1-80-Y-10546

Lexington, MA 02173

13. Type of Report and Period Covered

12. Sponsoring Agency Nome ond Address

ent of Transportation Project Report
Federal Aviation Administration
Systems Research and Development Service T -
Washington, DC 20591 - Sponsoring Agency Code
ARD-231 >

15. Supplementary Notes

The work reported in this document was performed at Lincoln Laboratory, a center for research operated
by Massachusetts Institute of Technology, under Air Force Contract;F19628-80-C-0002.

16. Abstroct

f | .
\ -‘1/\, Z

Interim results of a program to measure and late r - and aircraft-sensed turbulence in rainstorms
are presented. The dissipation factor of a turbu air mass\can be measured by an aircraft and a weather
radar, Comparisons are made between precipitation reflectivi spectral width measurements as indics ors
of wrhbulence. The instrumentation and data processing procedu are described. Examples of turbulence
observations made with a storm-penetrating aircraft and the we. radar are given. The relationship between
e the radar observations and the physical properties of the turbu atmosphere are derived. The relationship
¢ of radar spectral width (variance) to turbulence intensity is discussed.

A

P

BT - - U

e A R

17. Koy Words 13, Dirs . nevt Stetoment
L Air Traftic Control
o Westher Radar Sensing
- Aircraft sensing of turbulence @
Turbulence Document is available to the public through
Weather radar velocity variance/ the National Technical Information Service, ‘
spectral width Springfield, Virginia 22161 .
Dissipation factor . 4
Universal turbulence intensity scale
Weather radar intensity
719, Security Classit. (of this repert) . Seeurity Classil. (of this pege) TN Ne. oi Peges | 22. Price
Unclassified Unclassified 4“4
Porm DOT F 1700.7 (8-72) Reproduction of completed pagc authorized .




ENGLISH/METRIC CONVERSION FACTORS

i1

g

i

LANGTH
. T. ’
Pren -] [ ] k» in ft ad mi
- 1 0.0 1x10-3 0.3937 | o.0328 | e.21x10°¢ | s5.39x10-¢
» 100 1 ©.001 .37 3. 0.0006 0.0008
» 100,000 | 1000 1 w370 3 0.621¢ 0.5398
i» 2.340 0.023¢ | 2.34m10°% | 1 0.0833 | 1.s8x10°% | 1.37x10°%
f 30.48 0.30¢8 | 3.08x10** | 12 1 1.80x107% | 1.eex10°*
o 160,900 | 1609 1.600 63360 $280 1 0.5688
i 163,200 | 1882 1.882 72930 076 1.181 1
AREA
q ol n? m? in2 fe? ui? mi?
ol 1 0.000) 1x10°10 0.1550 0.0011 s.sex10-1t | s.11x10-11
o 10,000 H 1x10-¢ 1550 10.76 3.06x10-7 $.31x10°7
w? 1100 1x108 1 1.53x10° | 1.08x10” | o.3861 0.2914
in? 6.452 0.0006 643210710 | 1 0.0069 2.49x10°19 | 1.88x10-1?
el 929.0 0.0929 9.29x30"¢ 144 1 3.59x10°0 2.71x10°8
nt? 2.50101° | 2.358x10% | 2.500 4.01x30% | 2.79m10” | 1 0.7548
w-il 3.43x1000 | 3.43x10% | 3.432 s.51x10° | 3.70x107 | 1.328 1
YOUSE
mug ! 1iter a? in? el yd? fl.os. | Al.pt. | N1, qt. | gel.
-? 1 0.001 1x10-¢ 0.0610 | 3.83x10°% | 1.31x10°¢ | 0.0338 | 0.0021 | 0.0000 | 0.0002
lcer 1000 1 0.001 61.02 0.0383 0.0013 33.01 2.118 1.087 0.2¢42
o? 1x10% 1000 1 61,000 | 35.31 1.308 33,000 | 2113 1087 204.2
1a? 16.39 0.0363 ! 1.64x10°% | 2 0.0006 2.14x10°% | 0.5541 | 0.0346 | M3 0.0043
! 28,300 28.32 0.0283 1728 1 0.0370 957.3 $9.84 0.0173 | 7.481
yé? 765,000 | 7e4.8 0.7646 44700 2 1 25900 1616 807.9 202.0
fl. 0s. | 20.87 0.2087 | 2.9ex10°% | 1.808 0.0010 3.07210°% | 1 0.0625 | 0.0312 | 0.5.78
1. pe. | 4732 0.4732 | 0.0008 28.80 0.0167 0.0006 16 1 0.5000 | 0.12%0
fl. qt. | %48.4 0.9463 | 0.0009 $7.75 0.0334 0.0012 32 2 1 0.2500
sal. s788 3.788 0.0038 231.0 0.1837 0.0050 12¢ s 4 1
ass
semnnauiih
: o - » — Accession For
0. 0. 0. . -
1 001 0383 0022 | 1.10x10 NTIS GRAAI
1000 1 38.27 2.208 0.0011 DTIC TAB
-3
:.ss o.o:u : 0.0628 | 3.12x10 u ounced 0
34 0.4%36 { ) 1 0.000% J’ustification
907,000 | 907.2 32,000 | 2000 1
TROEATRE By
% . 89 CF-32) Distribution/
°F o« M3(°C) s 32 ono Avalilability Codes
Avail and/or
corY
wsrecred / [Diat Special
2

Mmoo aee 4

f el

7




COORDINATED RADAR AND AIRCRAFT OBSERVATIONS OF TURBULENCE

1.0 INTRODUCTION

The ability to sense and display regions of hazardous turbulence aloft is
an essential prerequisite to the selection of safe, minimum-distance-traveled
flight paths. Lincoln Laboratory, under a program sponsored by the Federal
Aviation Administration, has undertaken to measure and correlate radar- and
aircraft-sensed turbulence in rainstorms.* This paper presents interim re-
sults of these measurements. Results of the measurements are expected to pro-
vide guidance in the design of equipment that will display areas of hazardous
turbulence with confidence. Plots of turbulence levels measured simultaneous-
ly by a ground radar and an aircraft are shown to illustrate the correlation.
Comparisons of the turbulence levels with the rain reflectivity are also made.
2.0  BACKGROUND

Precipitation reflectivity and spectral width as measured by a ground-
based weather radar have been used as turtulence indicators. The current re-
search focuses on an investigation of the use of spectral width as a reliable
indicator of turbulence in precipitation.

The dissipation factor, €, of the turbule@i gir mags can be measured by
both the aircraft and the radar and is independent of type and speed of the
aircraft and of the radar parameters. The dissipation factor, as used in tur-
bulence theory, represents the kinetic energy converted to heat per unit mass
per unit time. This conversion to heat occurs at the end of the sequence
where the large eddies progressively decay into smaller and smaller eddies.
The conversion from kinetic to thermal energy occurs on the scale of milli-
meters. MacCready3 has related ¢ to the response of a particular aircraft

as well as to a universal turbulence intensity scale.

#This work 1s an extension of the work reported in Reference 1 and is noted in
Reference 2.
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The quantity ¢ can be determined directly by the aircraft by simply
measuring the fluctuations in instantaneous airspeed. l(olnogorov" has shown
that the structure function of the instantaneous airspeed Dv - C(et)zn, where
D, is defined as the average of the square of the difference of two successive

airspeeds v measured a distance r apart. It is assumed that homogeneous
isotropic turbulence exists.

D, = E{(v, -vl)z} - c(er)?/3

The universal constant C has been experimentally determined to be 1.77 + .08.

-
It cen also be shown (see Appendix A) that the acceleration* an aircraft e
experiences 1s proportional to e1/3, i.e.,
4/3 |
m—- Kcl/Z 9€1/3 x !
a m !
|
Here p is the air density, v is the air-craft speed, m is the aircraft mass }
and K is a constant of proportionality unique for a particular aircraft. It {
is obvious from the above relations that the quantity ell 3 rather than ¢ 1K
itself i{s the more useful quantity. l
The ground-based radar can also determine ell 3 from measurements of the b
width of the rainstorm radar spectrum. If it is assumed as before that the
turbulence 1is isotropic and homogeneous, then the following relation between
6“3 and the spectral width 9, holds:3
*
o 2 « iaten -, L 5 1 2
u 3 3’27 g2 ‘
where a > b (1]
|
-
#*Actually the square root of the acceleration structure fumction. i
2
- - - v . m( '
e s !




The parameters above are defined as follows:

r(%) = gamma function (1.35411--)

universal constant (1.35 + .06)

radar half beamwidth (cm)

radar half pulse length (cm)

Gaussian hypergeometrié
function

dissipation factor (cmisec™3)

(]
[}

It is shown in Appendix B that equation [1) can be closely approximated by

2/3 2/3

02« I'(%)a(el) - 1.828(ca) (2]

u

Notice that Eqs. [l] and (2] do not contain an unknown constant of pro-
porti:onality. It is for this reason that the initial emphasis has been to
measure turbulence in terms of the spectral width rather than some other pa-
rameter such as velocity gradient where an equivalent theoretical relationship
is oot available.

3.0 EQUIPMENT DESCRIPTION
The basic experiment consists of flying an instrumented aircraft through-

a turbulent rainstorm while, at the same time, the ground-based instrumenta-

lI3) present via an

tion radar attempts to estimate the amount of turbulence (¢
appropriate algorithm. One of the objects of this program is to determine the
best radar operating parameters and algorithms to use. A brief description of
the aircraft and radar instrumentation follows.

3.1 Adrcraft Equipment

An instrumented, twin engine, turboprop Grumman Gulfstream, operated by
the FAA Technical Center was used to penetrate storm cells under surveillance
by the ground-based radar. Within the storm cells the aircraft sensed el/ 3by
measuring the pitot differential pressure referenced to static pressure (IAS);
outside total temperature, and absolute pressure (barometric altitude) were
also '-euuted. In addition, “the aircraft carried a vertical accelerometer
mounted at the center of gravity of the aircraft to provide a measure of

relative tdrbulenee level, an inertial navigation system to provide the




aircraft position, and a time-of-day clock. All of the sensor outputs are
digitally recorded on tape with a 1 second update rate with the exception of
the pitot pressure and the accelerometer outputs which are sampled 100 and 20
times per second respectively.

3.2 Ground Equipment

The ground-based facilities included, in addition to the instrumentation

radar, a radar beacon interrogator and a station-keeping radar which were
used respectively for the control of the aircraft and for the location of
storms. The instrumentation radar consisted of an S—band ASR-8 coherent
transmitter with its froant end coupled to a 15-foot parabolic antenna mounted
on a digitally controlled pedestal. A custom=built receiver consisting of a
linear IF strip drives a pair of quadrature detectors which in turn drive
10-bit A/D converters. The output of the A/D converters fills a fast 256K by
20~-bit buffer during a sector scan of the antenna. The data is then read out
on tape via a NOVA computer. The antenna has a l.6-degree one-way beamwidth
and 1s capable of being pointed in azimuth or elevation either manually or by
computer control. :

An ATCBI-4 beacon radar is used to locate the aircraft., Its antenna has‘f
a 2.4-degree azimuthal beamwidth, is mounted on the station keeping radar
antenna, and is located 30 meters from the instrumentation radar.

The station-keeping radar is an FAA S-band ASR-7 terminal radar connect-
ed to a ASR-5 fan—beam antenna. Its output is presented on a PPI to locate
storms. The instrumentation radar cannot b& easily used for this purpose.

A Data Entry 2nd Display System (DEDS) presents both analog video and
alphanumeric characters on a PPI-like display. Normal video from the station
keeping radar and the beacon returns are presented as analog video. NOVA-
ptocgssed data such as dBz level, mean radial velocity, turbulence levels
(¢ ) as well as the most recent minute's worth of beacon returns are super-
imposed as alphanumerics. This allows the operator to determine in real-time
whether a particular area is hazardous and should be avoided, or whether it
should be penetrated by the instrumented aircraft to gather data.
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4.0 CALIBRATION AND ERROR ASSESSMENT

Sources of error in the experiments requiring special attention were:
a. Beacon Antenna Pointing (AZ)
b. Instrumentation Antenna Pointing (AZ + EL)
Ce Instrumentation Radar and Antenna Gain
d. Beacon Range Error
e. Synchronization of Aircraft and Radar Clocks
Beacon antenna pointing was calibrated by observing a transponder on the
ground whose position is known relative to the radar. The Instrumentation
Antenna pointing was calibrated by directing the antenna to an accurately
calculated position of the sun. By noting how far the antenna has to be mov-
ed tp be precisely on boresight with the sun it was found that the error was
small, less than 0.1 degree over a period of approximately six hours. The
Instrumentation Radar antenna gain was determined by measuring the solar flux
level when observing the sun and comparing it with the published values for
that time and day. The radar receiver gain was determined by injecting a
calibrated noise source into the radar waveguide directional coupler. A fix-
ed beacon range error of 0.26 nmi was found when comparing simultaneous ob-
servation of the aircraft by the instrumented radar and the beacon. The er-
ror is attributed to the differences in delay between the ground and aircraft
beacon transponders and has been removed. It is obvious that the ground in-
strumentation computer clock must be carefully synchronized by the aircraft
instrumentation clock. This is done before takeoff and rechecked several
times during the flight by voice communication. The timing should be better
than one second accuracy and should not cause any appreciable error ir .ie
overall results.
5.0 DATA REDUCTION PROCEDURES
5.1 Beacon Algorithm
The purpose of the beacop data reduction algorithm {8 to accurately lo-

cate the instrumented aircraft relative to the storm. However, when the bea-
con data was taken, it was found that some of the data was contaminated by

spurious returns from other aircraft having the same code, from the ground
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test transponder, and from undetected errors in the NOVA program. The errors
have been corrected, however, since the data is valuable. A successful ef-
fort has been made to retrieve the contaminated data.

Fig. la shows a plot of the raw beacon returns from the July 3 flight.
Returns from the ground have already been removed. The wide scatter is pri-
marily due to the old error in the NOVA program that considers returns in ad-
jacent range gates as separate targets. As a result of this, a corrective
program was written to cluster the returns on the basis that any returns
within a certain area and time box are the same. The results are shown in
Fig. lb. Any missing returns are then filled in using a fourth order least
square fit. Missing points have been caused by propagation effects such as
the orientation of the aircraft or flying in the cone of silence of the bea-
con radar. Other causes of missing returns have been an error in the NOVA
program (which has been since corrected) and possible mixups in the settings
of the data collection equipment. Filling in the missing points 1s needed to
allow proper smoothing in those areas adjacent to the missing points.
Fig. lc shows the missing points replaced while Fig. ld has been smoothed and
interpolated. The smoothing and interpolation is accomplished using a Fast
Fourier Transform (FFT) technique. The x and y components of the beacon
track are Fourier-transformed, zeros are added to the high frequency end so
that the total number of FFT points are increased by four, the transform is
then multiplied by a Gaussian weighting function, the inverse transform is
then taken, resulting in a smoothed beacon track with four times as many
points. Rather than having a beacon file with an update of 4.8 seconds, it
is now every 1.2 seconds and will allow a smoother merging with the instru-
mentation radar data.

5.2 Instrumentation Radar Algorithms

The instrumentation radar records on tape the unprocessed radar data as
an in-phase and quadrature component for each of the range-azimuth cells in a
selected sector. The tapes are then sent to Lincoln Leboratory for proces~—
sing in the following manner. The raw data, which represent the returns from
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the rain droplets, were recorded range sequcntially. However, the processing
requires that the data be first reordered in azimuth. A maximum entropy
estimation is then made of the autocorrelation lags. The lags are used in the
computation of wmomeunts. The mowents, in turn, provide, by using specific
pulse pair algorithms, the intensity (dBz), the mean radial velocity, and the
spectral width (in 51/3
used because it provides a better estimate than a straightforward calcula-

units). The maximum entropy estimation of the lags is

tion. This 1is because the entropy calculation requires that the estimated
correlation lags be consistent with one another (this insures that the spectra
the lags represent are positive for all frequencies). A set of autocorrela-
tion lags are computed for each radar cell. Typically each cell 1is made up of
204 returns (I and Q components). The expressions for converting the correla-
tion lags to moments are as follows:

Intensity or O-th moment:

dBz = 10 log(k|R | [3a]

Mean radial velocity or lst moment:

A -y L(R,)
ve—tan (2L [3]
4wT Re(kl)
Velocity variance or 2nd moment:
2 R
R N I [3c]

2412'1‘2 'R2|

where R, 1is the n'th autocorrelation lag, A the radar wavelength, T is the
interpulse period, and k a constant determined from the radar parameters. The
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above algorithms are subject to a minimum signal~to-noise value. In particu-
lar, the 2nd moment estimator requires at least a 3 dB S/N. The S/N estimator

used is

R ll1/3
] o2
- 1/ (e——— = 1),
N Rl10/3

The 2nd moment and S/N estimators were derived assuming the spectra is
Gaussian-shaped. Monte Carlo tests of these estimators show that the algo-
rithms are valid for a time series that has a Gaussian-shaped spectrum.
Homogeneous 1isotropic turbulence theoretically is expected to produce a
Gaussian-shaped radar spectrum.

The computations produce arrays of numbers that represent the moments at
relatively coarse discrete uniform positions over the recorded sector area.
In the azimuth dimension they are a beamwidth apart while in range they are
spaced 112.5, 225 or 450 meters. Consequently, quantization occurs when one
attempts to assign a value to the moments along the aircraft track. Smoothing
and interpolating these discrete points is accomplished using a two-dimension-
al FFT procedure. Fig. 2 and Fig. 3 are contour plots that were processed in
this manner. Superimposed are the aircraft tracks. In general the tracks ex-
tend in time halfway to the previous scan time to halfway to the next scan

time. Comparing dBz and 51,3 contours for the same scan, it 18 clear that the

ell 3 contours are much more structured. The intensity plots are smooth and
featureless compared to the widths (el/ 3 ). The ell 3 contours on the right
side have low spectral widths, which fmply low turbulence levels while the
left side indicates that there are areas of strong turbulence. In contrast,
the intensity contours give no indication of heavy turbulence on the left
side. Comparisons with the aircraft data will be discussed later.

5.3 Aircraft Data Reduction

The effect of turbulence on the pitot~equipped aircraft is sensed by

measuring the rms acceleration and the dissipation factor. The acceleration

12

b .

& ]



*(086T ATnr LT 30 3IBTIUI)

{

(Jopoy L SA[OI®Y) SITIN TVIILAVN

.
R—— Qi%

JISTS- 3

+sde3s gp-z UT (3gpP) ®ano3uod KIFAFINTIN (q-®) °Z 8w

% (40poYy OL eANDIeN) SITUN WILAVYN
3~ ¥- 9- © Ot- 2- #l- 9- 8- oe- e~ ¥ 9- 8- O1- 21~ #- 8- 8- 02
1 LB ) 1 1} | T 1 1 | | T L | | T T 1
B 1~ - 28p Ol 1%
92
82

r4 &
g oz B a
3 fou
g =9
r r~
£ w2z
r ~
m m
(7] ez U

- HiVd 1HONY ez | Hivd ez

14vH08IV 1HoNd
. Jdoe | L4VHOuIV Joc
20-8-969%0t siy CIOLLL 2t NYIS (Q) siy $G'BOLL 1l NVOS (0)
i} L 1 ] 1 1 ] ] L1 =1 ] 1 1 1 1 1 1 1 %
i
le e SN -




*(086T ATnf ¢TI 30 IBITI)

{JopoYy oy #A)j0I8Y) SITIN WIILNYN

#- 9 8- OI- 21- Hi- 9- 8- 02

T
-

1

1 ) 1 | 1 1 1 1

Hivd LHOND
14vVHOHIV

$4y G2:p1LL G NYOS (P)
S S W (RS WS NS T R

o1

—ze
—v2

o2

S3TUN TVILLNYN

(J0p0Y 04 9A1DISY) SINW TWIILNYN
2- - 9- @ O 2 vi- 9- @&- 02-

1 | [ T U T T

Hiwd LHOIN4
14vHdulv

s gE:ttiLl €1 NVIS (9)

T TR

*8dals gp-7 UT (2dp) S$In03W0D LITATIONTIAY (P-2) °*Z °B3d

vt

8t

oz

ce

ve

ez

S3TN WVILLNYN

Al s g s e e —

14




_— = - - - —— - e i Ay = — TR AT G

( - , .

*(086T LInL LI 3o IuBT1a) ede3s L3jum up A.nlovnn \Nﬁ& ¢ \Nu Jo sanojuo) (q-¥) °¢ °*8713

(10p0N OL ®ANDIBY) ST UN TWIILNYN (Jopoy OL 9ALDISY) SI VW WIILAVYN )
2~ - 9 8- Ol- 21- #- 9- 6- Oe s - 9- 8 OI- 2- #l- 9- 8- 02 -
L 1 T 1 1 ! 1 I 1 ] 1 1 i 1 L | L 1
- » - ~#
i )
- F 49
) NI 2 2 "
[~ & 2 2Py 0z 2 2 -
o , = 3
- 7 AR 22 © O
S \UT ) = W _.VI
L vz 2 z
o : :
e 9 ﬂ )
B HiVd 1HONY i
14VHoNIV
- licu
H1vd LHONJ
- oe LAVHONIY —o¢
20-4-¥69801 siy €L:OL:LL 2L NVIS (Q) 844 $S:80iLL 1L NVIS (0)
Ll - (R N S S 2 IR U NN N NS L1 L ___riet s

“}A.f.ﬁ% i

I Ty VGt Pl




T ———

*(086T AInr LT 39 IyBTrI) sdazs A3yun uy Aalueun \NIUV ¢ \Nu 30 Banojunod (p-°) ‘g °811

(s0poy 0L eMiDIeY) SITUK TVIILNYN
Ol- 2 - 9- 8- 02

2~ ¥ 9 8

L 1

LR L L

) —~
S )
O Hivd LHOId
S 13VHOHIV -
» —
u L
ﬁl -
20-34-569901 sy G2:41:41 S1 NVIS (P)
il N | Lol ) ) y | IS SO

¥l

ot

02

22

ve

92

82

o¢

SITAN TVILLNYN

Z-

{sopoy 01 PAjIDISY) SITWN TVIILLAVN
- 8- 8- Of- 2~ - 8-

02-

i

T

! LI 1 | 1

13vVHoHlY

s gelliLl €)
I TS TR NI S

T

H1Vd 1HOS

NVIS (9)

|

T

1 4}

oz

22

2

92

82

.
4
:
L
.

SATIN IVILNYN

16




b 2zl S

is measured directly. The dissipation factor € ig fouﬁd from the pitot dif-

ferential pressure Ap, the total (stagnation) temperature Tt and the absolute

pressure Pf (free stream pressure or barometric altitude), and is as follows:

/3 2/3
(E_T.E) -t m:;
1/3 T 2y

2 i 23
cl/21 482 3Y (1 4+ 82y Y )
Pf Pf f

where the Ap structure function is defined as

p & E{(ap(t + 1) - Ap(T))Z}.

Ap
R = 2.87 x 105¢c® )%k} gas constant,
sec

vy = 1.4 ratio of specific
heats,

t = 0,2-1.0 time between

(sec) successive Ap
measurements,
and cC = 1.77 Kolmogorov's

constant.

(4]

Eq. [4]) takes into account the aircraft altitude, airspeed and Mach number.

Both the structure function and the aircraft rms vertical acceleration are

continuously averaged over a 7.5 second period using a cosine squared weight-

ing. Examples of time plots of cl/3

per and middle curves of Figs. 4 through 7.

17

and rms acceleration are shown in the up-
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6.0 COMPARISON OF AIRCRAFT AND RADAR DATA
The lower curves of Fig. 4 and 5 are the values of 51/3 measured by the
radar using Eqs. [2] and [3]). This is of the July 17, 1980 flight and will be

examined at length here because it includes cases where the aircraft passed

through low- and high-turbulence areas. The aircraft made many passes at a
5,000 ft. altitude through a moderately violent thunderstorm in the Atlantic
City area. Many other flights have been examined but not in as much detail.
Figs. 6 and 7 are of the corresponding reflectivity in dBz. The numbered dots
above the radar data (lower curve) représent the midpoint time when a particu-
lar radar scan (or snapshot) was taken. If the atircraft is in a radar cell,
it will appear at this time. The smallest value of reflectivity that can be
measured with the radar {s 8 dBz. However, it 1s felt that 1in order to
trust the width algorithms (radar e1/3 ) the reflectivity should be greater
than 14 dBz.

The time interval 17:08 to 17:15 Fig. 4 exhibits a reasonable correla-
tion between radar and aircraft 51/3 while the corresponding reflectivity
Fig. 6 does not. The radar peak at 17:09 is contaminated by the aircraft.
A spectral analysis of the radar return at this time, range and azimuth show
the aircraft to be present. The peak at scan 12 (17:10:30) is real (no air-
craft) and correlates with the rms acceleration and the aircraft 51/3 . A
scatter plot has been generated over thia time interval and is shown in
Fig. 8a. Here the aircraft é/3 is compared to the radar e1/3. A reasonable
correlation is evident. The corresponding correlation coefficient is 0.81.
The correlation with reflectivity (Fig. 8b) 1s 0.57. If the entire flight of

i7 July 1980 is used, then the correlation is 0.50 using spectral width (ell3

)
and 0.29 using reflectivity. The respective scatter plots are shown in Fig.
8c and 8d. 1In this calculation the data was edited to remove those parts that
were known to be contaminated by the aircraft. For example, at time 17:47,
scan 39, the large lobe is due to the aircraft in a range cell. See Fig. 5.
Fig. 9a and 9b show the interval 17:18 to 17:31. The width correlation {is
0.48 while the reflectivity is 0.10. This data includes the large anomalous

51/3 peak at 17:30:10.
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The large 51/3

peak at 17:05:14 has a double maximum spectrum (Fig.
10a). The pulse pair algorithm Eq.[3c] will fail under these conditions and
will produce too large a value. The spectra, in general, have various
shapes. The pulse pair algorithm 1s designed specifically for Gaussian
shapes, however, sawtooth, flat-top, multimaxima as well as Gaussian shapes
are observed. Consequently it 1s not surprising that perfect correlations are
not observed. It is reasonable that an algorithm that takes into account
the various shapes should be used. Many of the excessive values of 5;/3 can
be ascribed to either multi-modes or to flat-top spectra. The anomalous peak
at 17:30:13 has a wide flat-top spectrum (Fig. 10b).

7.0 CONCLUSIONS, AND FUTURE PLANS

The spectral width (ell3 ) is superior to the reflectivity in determining

the presence of turbulence. The reflectivity 1is featureless compared to

spectral width. The correlation between aircraft and radar 51/3

1/3

is not per-

fect and in general the radar e
1/3

is higher and on occasion may be extreme.
The extreme radar ¢ values appear to be caused by flat-top or dual-maxima
spectra.

Work is underway to design new algorithms that will take into account the
spectral shape. Since the raw radar data has been recorded on tape, various
algorithms are being tested to determine the one which results in the best
correlation with the aircraft data. Comparisons between flights have to be

made and an overall correlation coefficient has to be generated.
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APPENDIX A
AIRCRAFT ACCELERATION STRUCTURE FUNCTION

The lift of an alrcraft is given by

where

CL = coefficient of 1lift,
p = air density,
v = aircraft true airspeed,

S = wing area.

The coefficient of 1lift, CL’ is a linear function of the angle of
attack, over the range of interest. Therefore

1 u 2
L =_—(-C )pv 8§
2 v L
aA
where CL is the lift curve slope and u ig the vertical component of

a
airspeed. Thus

1
L =_C pSuv
2 L
a

Taking uifferences we find

1
AL = _ C pS[udv + vAu)
2 L

a

Since u<<v and (An)2 = (Av)2 we find

1
AL = — C  pS[vaul
z 1"
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and since the force AL = mAa where m is the aircraft wmass, we obtain for the

acceleration difference

1 S
Aa = _ C . vAu
2 L m
«

The structure function 1s defined as the average of the s8quare of the
differences

b = e{(aa)’} = G c 22w
= a = (—
a 2 L n Y

*
Kolmogorov's hypothesis states that for lateral velocities

D, = 4/3c(er)?/3
where C = universal constant (1.77)
€ = dissipation factor
r = sgeparation distance when measuring the two velocities
However, r = vt where t is the time difference between successive acceleration
measurements. Therefore, we find for the square root of the acceleration

structure function

4/3
1 1/2 1/3 v
/I = __C SC pe —_—
a /3 Lu m
4/3
1/2 1/3 v
KC ope
]

For the Gulfstream

¢, =5 (radians 1)
a
S = 610 square feet

m = 933 slugs

*S, Panchev, "Random Functions and Turbuleuce,” Pergamon Press (1971) p. 151.
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APPREDIX B i
SOME BASIC RELATIONS CONCERNING THE RADAR MEASUREMENT OF AIR TURBULENCE

INTRODUCTION _ ;

The use of a radar to measure the level of air turbulence in a rain storm
is a relatively new concept. Consequently, the purpose of this note is to pre-
sent the connections between what a radar measures and the physical properties of
the turbulent atmosphere., In the first section we will show that the radar
spectrum represents the velocity distribution of the rain drops and appears to
have a Gaussian shape. In the second section we will show how the radar spectrum
width (variance) is related to the turbulence intensity and to the radar cell
size.
SHAPE OF THE RADAR SPECTRUM . -

Consider a volume of scatterers such as rain drops that are being carried
by a homogeneous, turbulent atmosphere. Let us look first at one of the rain
drops. The radar return, in voltage, at time "t" and "t + t'" is proportional
to:

i 4n :(t! i4l :(t +1)

e and . e )

where x is a random variable representing the position of the drop relative to
the radar and A is the radar wavelength. The correlation function of the return

is by definition

p(t) = H%

i41r x(t) _i4w x(t + 1)
Y A

E {e . e }

(2)

4n
i— Ix(t) - x(t + 1}
= E (e A [ J]}

4n
i—x\l‘l

= E{e }

where
u 4 x(t) -tx (t + 1)

N
1}
¢
4
'

is a random variable representing the average velocity over the interval t. '"“t"
drops out because the statistics are assumed to be stationary. Evaluating (2)
we find
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p(t) =E {e du. ) 3)

Here p(u) is the probability density of u. However,
p(T) = 5% f”s(w) WT 4y (4)
-l

where S(w) is the spectrum observed by the radar. Equﬁting (3) and (4) we find

tﬁl ut -
S) T duwe=2m pu) e * du.
-~y
We see that C
4 dw 4w
w==gu and o ;Y : (4a)
and find that
S(w)dw = 2mp(u)du and S(w) = 3 p(u). (5)

Thus, we see that the spectrum is a replica of the probability density of the
velocity averaged over the interval T. Because the spectra of independent pro-
cesses can be added, Eq. (5) is valid for many raindrops, if one asaumes all

the droplet cross sections are the same.

It is not difficult to generalize Eq., (5) for varying droplet sizes. The ..
return at time t for N droplets 1is
N il.—.; x (t)
n
I A e
n
n=1

where Ah is the amplitude of the nth droplet. The covariance function is

N iﬁlfi(t) N i4;x j(tot)

R() =E{L A e A . I A }.
fe1 jel

Separating out the terms where { = j, we have

47 4n
N i—u T N N i— (x, - x,)
R(T) =E{ L Aﬁ e An + I I A1 Aj e A 1 ] }.
n=1 j=1 i=1

b1 28
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Remembering that if two random variables (rv's) are independent, the expectation
of the product of two rv's is the product of the expectations, we find

4n
2 1—i' ut
R(1) = N E{A°} E {e }
and
R(O) =N E a?)
Since x, and xj are independent, the cross terms drop out because
4 4n 4n
i—= (x,-x,) i~ x i—= x
E {e AL } =E {e A 11 E (e A J} = Qwhen § ¥ 1. (6)
Thus : :
o 1ﬂ ut :
%-1—‘[ S(w) T aw = p(r)-%—%%-z{e A } ;
o tﬂ% uT
= [ p(u) e du
Q0
or as before
S(w) -% p(u). (5)

Thus, the “radar" spectrum is a replica of the velocity probability density.
There appears to be some theoretical justification(l) for the velocity distribution
to be Gaussian. Experimentally, in homogeneous turbulence, the velocity dis-
tribution is symmetric and tends to be nearly Gauaaian(1'2’3). It should be pointed i
out that in a related process, the motion of a molecule in a gas, that the dis-
tribution of one component of the velocity is Gaussian and is known as a Maxwellian :

it SO I

distribution.
VARIANCE OF THE RADAR SPECTRUM

We have just established that the radar spectrum is a copy of the velbcity ;
distribution. It follows from Eq. (48) that the variance of the radar spectrum

cmz is related to the velocity variance ouz as follows:

dabeg v . e
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2 2 ' o
2 4n o
o, = &) u : l
We will now show how ouz (or omz) i{s related to the air turbulence dissi-
pation factor €.

The variance cuz is by definition equal to

o=k {@-E )}

- £ {u?} - (£ {uh? ) q

where the expectation value E{ } is generally tasken to mean an average over en-
sembles. However, the radar takes an average not over ensembles but over the

radar cell volume. If the statistics are stationary over the volume, then volume '
averaging is the same as a sampled average. Therefore, a sampled value of the

function "f" is

<> = [A@) £ dr
where

fA(;) dr = 1 and dr 1s a differential volume.

A(;) is the cell size and is closely approximated by

AT X —

_[yz_tiz. + = ]
e .

AG) = 2 o2 2 b2

1
(2“)3/2 b a2

We are assuming a cylindrical antenna beam of width "a" and a pulse length "b".
Thus, a sampled value of the variance would be

<o’u2> = <u2> - <u> <uw>

or <o B> = [A@® @ o - [ AG) u@)) &, [ AG uiy) df, 1

We find ouz by taking the expectation of the sampled average <0u2> »i

o 2= A@) B (v®) dF - [ AG) ARy E (u(E) u@)) dF, dF,-
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Since E{uz} is not a function of P and u(;l) and.u(;z) are correlated, we
have

2 2 > -»> - -+ > >

o,/ = E W} - [l AG) AGY By, ), T,) dF) dF, 7
AY

where Bzz(;l’ ;2) is the correlation of the two longitudinal velocities at

points T, and ;2. Because the turbulence is assumed homogeneous

Bpy (s Tp) = By Gy - ).
Since Bzz is a correlation, it can be defined in terms of a 3-dimensional Fourier
transform
ike@ -7

-+ e )
By, (F) -3, = fo,, (0 e 2 4.

The energy spectrum of the 3 dimensional velocity field ¢(f) is often
confused with zhe radar Doppler spectrum S(W). 022(;) follows an inverse
’" and has a pole at the origin while S(w) is gaussian-shaped.
¢d?) is the velocity spectrum while S(W) represents the velocity distribution.
w has the dimensions of radians/second while % is radians/meter. The
function Ozz(f) is known when the turbulence is isotropic and in the
inertial subrange. We should notice that

11/3 power law

E{u’} = By, (0) = [0, (K) d &

consequently, Eq. (7) becomes
> ->
0,2 = [ 0, &k - [IAGE) AG) fo,, () ok <) - %) g df, df,

i k7 -1 kT

s o, & [1 - )‘A(?l) e 1 d‘r’l jA('r’z) e 2 d?z ]di (8)

Evaluating the inner integral, by changing to rectangular coordinates, we have
-

2 2 2 ik, x+k y+k 2z)
-y +2
—_TIE_T Hle[ 2a2 bez] e ’ ” ’
(27) b

dx dy dz
a
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2 2 2
o Xt 1k y w--2_441k z o - 41k x ‘
1 I 2 Yy 2 i 2 x o
- e e 2a Je 2a f e 2b dx ¥
(21!)3/2b a? e dy 92 ;
1 [k b2 +k az+k2 27, '
= e .

Therefore, Eq. (8) becomes
-[k2b2+k232 232

%) [1 -e % y J]dt

For isotropic turbulence in the inertial oubrangea

2
k
L (k)-_E_Q‘L(l____) -~
41 k k ;
wh¢=n:e5 E(k) = 82/ 3 k-5/3
2 2 2 2
k kx + ky kz |
- t
k= | {
a = 1,35 + .06 (dinensionless)6 ;
‘ ]
and € = the dissipation factor. I
Substituting and using the following relations "
k 2, k2 cosz¢ T |
x
dk = & sing dk d¢ de,
we convert Eq. (8) to polar coordinates
' 2
2/3 ® = 2n &2 {a? s1n? ¢+0b cos? ¢}
2 a € -5/3 :
o = & fo {) IO K sin’ o1 - e ]dedk aé ﬁ
- ae?/3 I" aind ¢ I" K33 [1 _ e-kz {a? -m2¢ + b2 conz¢}] dkdé. gl
2 0 0 1‘ .
{
H
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Using the following aolution7 for the inner integral
® v-1 P) dxe=- LuTF v
va- (l-eu x lp!u l,1"(—)
0 P

we obtain

2 L

0, = %- a32/3 T (5/3) [ sin 3 ¢ (82 sin? ¢+ b2 cos? ¢)1/3 d¢
0

and using symmetry we find

n/2 -
o 2=2 a1 513 [ etn’¢ (a® atn? ¢ + b7 cos? /3 ap (9
0
Substituting t = cos2 ¢, we find
2_9 _2/3 213 b2, 1/3 ,-1/2
o, " =5 oe”/7 T (5/3) a [ a-0a- [1-F]o e/ a.
0 a
Since we are dealing with real numbers, the integral is valid when
2 .
b
a
The integral representation of the Gaussian hypergeometric function is given by
T _(c) 1 pa c=b-1 -a
F(a, by ¢c; z2) = t (1-t) (1-t2) ~ dt
T (b) T (e~b) 0
" where Re(c) > Ré(b) > 0.
Therefore,
2
2.1 2 2/3 p 115 ,_b°
Uu r(3)0(£ 8) F( 3 2 2:1 az) 10)
where b2 5;2 ‘
The hypergeometric series converges when h2 < 1 and is given by the monotonic )
i series™ |
*#Al1l the terms after the first are negative. It can be shown that there are no
maxima or minima when 0 < h < 1. )
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2 2
11 5 ¢ h h 5 3 _ g . b
Fep g M=1-35- fg5-9ox P -+ [p=1 azl
Since
1
F-3 53 0 -1,
3 4
12T (5) T(%)
F(-l. -l-; 2; 1) = 2 3 N L917
3 7 2 rdh =
6
and 0 f_h 5_1
we find that
115

.917 < F(- L L h) < 1.

Consequently, the hypergeometric factor in Eq. 10 has little effect and
that the approximation

2 /3

o2 xrda ol

is valid.
For the case when the beamwidth is smaller than the pulse length
a2
035,
b2
we can substitute
t = sinz ¢
into Eq. 9 and find in the same manner as before

2

2/3 .1 ,. 5 a . an

2
F(-% 23531 -
2 b2

ou - I‘(%—) a (e b)

The series F (- l, 2;-5-; g) =
3 33
Loho . 8 2 32 3 1.2
is58- 1058 ~1701 8§ ~* °° (s b2]

converges as before when 0 < g < 1, is also monotonic, and is bounded by
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%%. .4915F(-i. 2; %; g) <1

Consequently, the approximation

o far (%—) a(e b)2/3

is not always justified.
COMMENTS

In a typical radar the pulse length is usually smaller than the beamwidth

and therefore Eq. 10 will apply. The spectral width, ou, will thus be pro-

portional to (e a)1/3. Since the beamwidth is proportional to the radar

range, and that the buffeting of an aircraft can be shown to be proportional to ¢1/3,

we find by solving Eq. (10) for 81/3 that

1
1/3 %
€ - 2 1/2
? remarcd L% |
. a
ou
>~ C 5=
573

where R is the range to the turbulence and C is a constant. Thus the buffeting will
be directly proportional to the spectral width as seen at the radar and inversely
proportional to the cube root of the range.

The use of a Gaussian function to approximate the range dimension of the
cell is reasonable if one considers the effect of convolving the impulse
response of the radar receiver with the transmitted rectangular pulse shape.
The effective pulse shape will be rounded and look like a Gaussian curve.

This will be particularly true if the receiver bandpass is closely matched to
the transmitted pulse. The use of a Gaussian curve to approximate the main-
lobe of the antenna has long been used and is considered to be quite accurate.

The variance derivation assumes that (1) the turbulence is uniform through-
out the cell, (2) we are in the inertial subrange, (3) the raindrops move with
the wind, and (4) there is no wind-shear. These assumptions are valid be-
cause of the following reasons. (1) By using small radar cells, homogeneity
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becomes more likely. This is accomplished by operating at shorter radar
ranges and/or using narrower antenna beams. (2) The inertial subrange
signifies that the effects of inertia override the effects of viscosity and
of gravity. The inertial subrange scale extends from about a millimeter to
about a kilometer. Consequently radar cells less than a kilometer long can
be filled with homogeneous turbulence. (3) The horizontal velocity com-
ponents of the rain are expected to follow the wind but not the vertical
components. At most antenna elevation angles of interest (i.e., small eleva-
tion angles), the horizontal components will dominate. (4) First-order ef-
fects of wind-shear broadening can be taken into account by measuring the
mean velocity of adjacent cells and subtracting out the effect.

In the above derivation of the radar spectrum variance, the approach is
similar to that of Frisch and Clifford11 with the following differences. It
was not necessary to explicitly take the 3-dimensional Fourier transform
FP(I) in ¥ space of the antenna pattern. The universal constant a (A in the
Frisch paper) is not ,47 but 1.35. The solution of the case where the
pulse length is longer than the beamwidth is in error.
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APPENDIX C

AIRCRAFT MEASUREMENT OF &/3

The following parameters are available or the Gulfstream aircraft to
measure turbulence
Pf = Static or free stream pressure
Ap = Pitot tube differential pressure
Tt = Stagnaation or total temperature
Pf is taken from the static port of the pitot tube. Ap = Pt —Pf,
where Pt 1s the total or stagnation pressure. Isentropic and ideal gas
flow conditions are assumed permitting the following relations to be used.

P 1 2 —IT
t Y- ~
Lea+ Iy (1)
Pf 2
T
t y-1 2
— =1+ M _ (2)
Tf 2
2
2 u
u - (3)
YRIf

Here M is the Mach number, vy is the ratio of specific heats, R is the gas
constant, and u 18 the free stream airspeed.
Combining (1) and (3) we have

v-1
Pt'_" L2
y~1 u
(—) LR L . (4)
Pf 2 ynrf
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Even under conditions of heavy turbulence, the fluctuations of Pt’ T

t’
M and u will be small compared to their respective mean values. Consequently,

we can take differentials of (4), substitute differences and we find

1
Y7 a A
Y P udu
— —_— - (5)
P, P, RT,

The structure function D is defined as the expectation of the differences
of successive measurements squared or

D, (V) 4 E{[u(t+1) -u(t)lz}

Therefore, we can rewrite (5) as

2
P\Y DA u D
t p u
f Pe (RT,)
Kolmogorov's Hypothesis relates Du to £ as follows:
D, = ceun)?/? %)

where Tt is the time between measurements and C is a universal constant.

Combining (6) and (7) we find

1
s apap-an |7 ™
- - - t
e =C 't w Rt |— _-P (8)
£]», P,
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However, since the temperature gensor does not measure the free stream
temperature T, but the total temperature T,, we must combine (1), (2)
and (3) with (8) and finally find

ar W3 23

1/3 ('r_t) ('}.—l "UA_,,

e’ - Y (9)
¥+2 vl 2/3

21 + 80 Y (L By Y ) p
Pe Pe

f

where Ap is taken to be the mean of the differential pitot tube pressure over

the averaging period of the structure function.
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